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Abstract— This work provides a jitter analysis of size-based
burst assembly algorithms and also discusses other burst assem-
bly algorithms that use the packet delay as the assembly threshold
to provide a bound on jitter.

Index Terms— Optical Burst Switching, TAVE, burst-assembly.

I. I NTRODUCTION

In Optical Burst Switched networks (OBS) [1], packets
are assembled into large-size optical bursts at the ingress
nodes. Such packets traverse all-optically the network, thus
suffering only two types of delay apart from propagation delay:
burst-assembly delay and offset time. The former comprises
the time that packets have to wait until the optical burst
is made, whereas the latter relates to the amount of time
the Burst Control Packet is sent in advanced of the data
bursts [1]. The BCP is sent ahead on attempts to reduce
the data burst’s blocking probability, via reservation at each
intermediate node’s scheduler.

The amount of time that packets have to wait until the
optical burst is assembled is governed by the particular burst-
assembly algorithm employed at the edge node. Several al-
gorithms have been proposed in this light, mainly focusing
on either limiting the burst-release time (see the timer-based
algorithms [2]), or sizing the outgoing burst to a fixed value
(see [3]), or a combination of both [4], [5].

Typically, a single random variable is used to characterize
burst assembly delay. Such variable accounts for the delay
elapsed from the arrival of the first packet until the burst
is finally released. However, the analysis does not take into
account the delay experienced on a per-packet basis. In this
paper we focus onjitter analysis, which is broadly defined as
the probability distribution of the average delay experienced
by packets in a given burst. From that general definition, one
may immediately obtain the variance or coefficient of variation
of the delay, which are also well-known jitter measures.

Furthermore, we also discuss burst-assembly algorithms that
use the average packet delay [6] as the assembly criterion
to limit the delay jitter. In section II we provide preliminary
definitions. Section III provides a jitter analysis of size-based
algorithms and section IV presents the results and discussion.
Then, Section V is devoted to discuss burst-assembly algo-
rithms that are aimed at providing upper bounds for jitter.
Finally, we provide the conclusions that can be drawn from
this analysis.
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II. PRELIMINARIES

Let us assume that packet arrivals follow a Poissonian
process at the OBS burst-assembler, as it is the case for highly-
multiplexed core Internet traffic [7]. For notation purposes,
we shall assume that the first packet arrives at timet1 = 0,
the second packet arrives at timet2 = x1, the third packet
arrives at timet3 = x1 +x2, and so forth. Clearly, the random
variablesxi denote the inter-arrival times between thei-th and
the i − 1-th packets, as shown in figure 1. Thexi values are
assumed to be exponentially distributed with rateλ = 1/EX .
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Fig. 1. Notation

Therefore, thei-th packet suffers a burst-assembly delay
given by ti =

∑i−1
k=1 xi.

Let zn+1 denote the average burst-assembly delay suffered
by the packets in a burst comprisingn + 1 packets. Taking
into account the above, such value is given by:

zn+1 =
1

n + 1
[(x1 + . . . + xn) + (x2 + . . . + xn)

+ . . . + (xn−1 + xn) + xn] =
1

n + 1

n
∑

j=1

jxj (1)

The following studies the probability density function (PDF)
of the random variablezn+1, that is,fzn+1(t), t > 0.

III. A NALYSIS

To obtain the PDF ofzn+1 as defined by eq. 1, it is first
worth noticing that the random variable(j/(n + 1))xj ∼
exp(λ(n + 1)/j). Thus, it is required to compute the sum of
n exponential distributions, with decreasing parameterλ(n +
1)/j, j = 1, . . . , n. The easiest way to proceed makes use of
the moment generating function.

Recall that the moment generating function of an exponen-
tial distribution with parameterθ is Mx(s) = (1 − s/θ)−1.
Hence, the moment generating function ofzn+1 is the product
of the moment generating function of each component in the
sum in eq. 1, due to the independence of thexjs, i.e.:



Mzn
(s) =

n
∏

j=1

1

1 − j s
(n+1)λ

(2)

The above can be decomposed into partial fractions:

Mzn
(s) =

n
∑

j=1

Aj

1 − j s
(n+1)λ

(3)

whereby theAj coefficients must be thus computed. By
inspection, it can be shown that theAj coefficients take the
following values:

Aj =





n
∏

k=1,k 6=j

(
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k

j

)


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−1

(4)

for j = 1, . . . , n. Accordingly, eq. 3 can be tranformed back
to

fzn+1(t) =
n

∑

j=1

Aj

λ(n + 1)

j
e−

λ(n+1)
j

t (5)

for n = 1, 2, . . .. With this result, the probability to exceed a
given valueth is straightforward:

P(zn > th) =

∫ ∞
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Furthermore, the first and second moments easily arise from
the above:

E(zn+1) =

n
∑

j=1

Aj

j

λ(n + 1)
(7)

E(z2
n+1) =

n
∑

j=1

Aj

2j2

λ2(n + 1)2
(8)

and the coefficient of variation ofzn+1:

c2
zn

=
E(z2

n)

E2(zn)
− 1 (9)

IV. RESULTS AND DISCUSSION

In this experiment, we have simulated the generation of
optical bursts with a maximum ofLmax =∈ {1, 3, 5, 7} packets
in each burst, assuming the arrival rate ofλ = 6 packets/sec.
We have further evaluated the PDFs forz1, z3, z5 and z7

analitically, following the equations derived in the section
above, and plotted them along with the histograms obtained
via simulation (see figure 2). Interestingly, as the number of
packets in a burst increases the jitter also increases.

Fig. 3 also shows the evolution withn of the mean, standard
deviation and coefficient of variation.
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Fig. 2. Probability distribution ofz1 (top-left), z3 (top-right), z5 (bottom-
left), z7 (bottom-right).
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Fig. 3. E(zn) (top-left), Std(zn) (top-right), andCVzn (bottom).

As shown, as the numbern of packets in a burst increases,
both the average and standard deviation increase. However,
the ratio at which the standard deviation grows is smaller than
the growth ratio of the average, thus leading to a decreasing
coefficient of variation withn.

At this point, the conclusions obtained can be seen from
two different perspectives: On the one hand, the benefits of
aggregating packets following a size-based policy with large
values ofL is straightforward. The more packets assembled
into the same burst, the better since, although jitter mean and
standard deviation increase, the latter grows more slowly than
the former, thus resulting to “some short of” small global jitter
(low coefficient of variation). However, large-size burstshave
the handycap of long and variable delay suffered especially
by the early packet arrivals in each burst. Hence, the network
designer must trade-off these two aspects.



V. BURST-ASSEMBLY ALGORITHMS FOR JITTER-LIMITED

SERVICES

In this section, we present a new burst assembly algorithm
that uses the average delay of the packets comprising the burst
as the assembly criterion. More specifically, when a packet
that belong to certain burst assembly queue arrives, then the
average packet delay, of eq. 1 is updated. When it reaches a
threshold denoted here asTAVE, the assembly process stops and
a burst is generated. This burst assembly algorithm guarantees
that the average delay of the packets belonging to a given
assembly queue is set to the desired value. As a result, the
packet delay jitter in the assembled bursts can be significantly
improved compared to that of the timer-based and length-based
algorithms. It must be noted here that the average packet delay
does not vary monotonically with time but may decrease or
increase depending on the packets’ arrival times.

Keeping the average packet delay constant is worthwhile,
since it reduces delay jitter at the receiver end. This is
important for transport protocols like TCP that use estimations
of the round-trip-time to increase or decrease their congestion
window and thus their throughput. Large variations of the
delay jitter result in timeouts, which in turns decrease the
efficient throughput.

We have performed simulation experiments over a single
link, to measure the density function of end-to-end packet
delay for both a timer-based and the proposed average-delay
assembly algorithm. Figure 4 shows the corresponding results.
For the simulation experiments, we have set the average packet
delay threshold equal to 6 time units and the timer-based
thresholdTMAX equal to 20 time units.

Fig. 4. packet delay distribution for both a timer-based andthe proposed
average-delay assembly algorithm

From figure 4, it can be seen that when applying the
average packet delay algorithm, around 30% of all the packets
experience the same average delay of 6 time units, while 80%
of all the packets experience a delay within +/- 1 time unit of
that value. On the other hand, when the timer-based algorithm
is enforced, then the packet delay is spread across the entire
time span. This is as expected, since packet arrival time, and
thus delay, may span from 0 toTMAX time. Thus, the variance

of packet jitter is very high, resulting in a poor performance,
when applied in TCP traffic.

VI. CONCLUSIONS AND FURTHER WORK

In this paper we have investigated the burstification delay
at the packet level, with emphasis in the packet jitter. A novel
burstification algorithm is reported, that takes into account the
packet jitter as the burstification criterion.
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